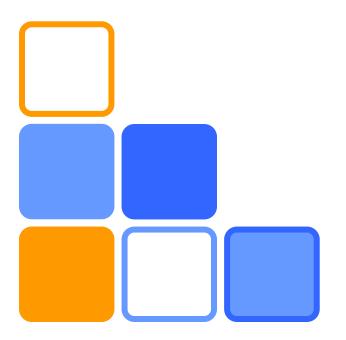
薬学情報処理演習 第7回

機械学習(2) ナイーブベイズ分類



奥薗 透 コロイド・高分子物性学

ベイズフィルター

- □ベイズの定理を応用した分類アルゴリズム
- □ 応用例:スパムメールの排除
- □メールに含まれる単語から以下を分類する
 - 通常メール
 - スパムメール
- □検出される単語の確率

検出語	迷惑メール(spam)	通常メール(ham)
秘密	0.7	0.1
無料	0.7	0.3
化学	0.1	0.4
物理	0.2	0.5

受信メール中の迷惑メール:通常メール=6:4とする。 事前確率

ベイズの定理との対応関係

ロベイズの定理
$$\dfrac{\mathop{\mathrm{Tg}}}{p(H_i|D_j)}=\dfrac{\mathop{\mathrm{Tg}}}{p(D_j|H_i)p(H_i)}$$
 Dj の原因の確率 $\dfrac{p(D_j|H_i)p(H_j)}{p(D_j)}$ (事後確率)

- □ 仮定 $H_1(\text{spam}), H_2(\text{ham})$
- □データ 尤度 $H_1(\text{spam}), H_2(\text{ham})$ 0.7 0.1 受信メールに「秘密」 D_1 0.7 0.3 D_2 受信メールに「無料」 0.1 0.4 受信メールに「化学」 D_3 0.5 受信メールに「物理」 0.2

ベイズ更新その1

- ロベイズの式から(i = 1, 2; j = 1, 2, 3, 4) $p(H_i|D_j)p(D_j) = p(D_j|H_i)p(H_i)$
- □ *i* = 1,2 の式を辺々割り算

$$\frac{p(H_1|D_j)}{p(H_2|D_j)} = \frac{p(D_j|H_1)p(H_1)}{p(D_j|H_2)p(H_2)}$$

- □ 事前確率 $p_0(H_1) = 0.6$, $p_0(H_2) = 0.4$
- \square データ D_1 を得た後の事後確率 $p_1(H_1|D_1), p_1(H_2|D_1)$

$$\frac{p_1(H_1|D_1)}{p_1(H_2|D_1)} = \frac{p(D_1|H_1)p_0(H_1)}{p(D_1|H_2)p_0(H_2)}$$

各データが独立と仮定。尤度は最初の表の値を利用

ベイズ更新その2

□D₂を得た後の事後確率の比

$$\frac{p_2(H_1|D_2)}{p_2(H_2|D_2)} = \frac{p(D_2|H_1)p_1(H_1|D_1)}{p(D_2|H_2)p_1(H_2|D_1)}$$

□ 同様に
$$\frac{p_3(H_1|D_4)}{p_3(H_2|D_4)} = \frac{p(D_4|H_1)p_2(H_1|D_2)}{p(D_4|H_2)p_2(H_2|D_2)}$$

□最終的に

$$\frac{p_3(H_1|D_4)}{p_3(H_2|D_4)} = \frac{p_0(H_1)p(D_1|H_1)p(D_2|H_1)p(D_4|H_1)}{p_0(H_2)p(D_1|H_2)p(D_2|H_2)p(D_4|H_2)}$$

迷惑メールの判別

	H1 (spam)	H2 (ham)
事前確率	0.6	0.4
秘密D1	0.7	0.1
無料D2	0.7	0.3
化学D3	0.2	0.5
最後の事後確率比	$0.6\times0.7\times0.7\times0.2$	$0.4 \times 0.1 \times 0.3 \times 0.5$

$$\frac{p_3(H_1|D_4)}{p_3(H_2|D_4)} > 1$$
 「迷惑メール」と判定」

エクセルによる計算(1)

□事前確率と尤度の設定

D	H1(spam)	H2(ham)
秘密	0.7	0.1
無料	0.7	0.3
化学	0.1	0.4
物理	0.2	0.5

Α	В	С
	H1(spam)	H2(ham)
事前確率	0.6	0.4

エクセルによる計算(2)

□ データ入力とナイーブベイズ計算

A	В	С
D	H1(spam)	H2(ham)
秘密	0.7	0.1
無料	0.7	0.3
化学	0.2	0.5

□ナイーブベイズ分類

	Α	В	С
<mark>20</mark>	同時確率	=product()	=product()
	判定結果	=if(B20>=C20, "spam", "ham")	

参考文献

- □ C.M.ビショップ 「パターン認識と機械学習 上 ベイズ理論による統計的予測」(丸善出版 2012)
- □ 涌井良幸、涌井貞美「Excelでわかる機械学習超入門-AIのモデルとアルゴリズムがわかる」(技術評論社2019)
- □ 富谷昭夫 「これならわかる機械学習入門」(講談社 2021)
- □ 江崎貴裕「データ分析のための数理モデル入門本質をとらえた分析のために」(ソシム株式会社 2020)
- □ <u>https://phy-lum.com/opendata/machine-</u> <u>learning-dataset.html</u>(機械学習のためのデータセット)