薬学情報処理演習 第2回

表計算ソフトによる統計 処理

奥菌 透 コロイド・高分子物性学

離散的なデータ

- 度数分布 F_i
- 確率 $f_i = F_i/N$

$$\bar{x} = \sum_{i=1}^{n} X_i f_i$$
 $\sigma^2 = \sum_{i=1}^{n} (X_i - \bar{x})^2 f_i$

データの分布

□ 連続的なデータ

- 度数分布→分布関数 F(x) $(N \to \infty, \Delta x = X_{i+1} - X_i \to 0)$ - 確率密度 $f(x) = F(x)/\tilde{N}$ $(\widetilde{N} = \int F(x) dx)$

 $\bar{x} = \int x f(x) dx$ $\sigma^2 = \int (x - \bar{x})^2 f(x) dx$

2

3

4

5

□ 中心極限定理

n 個の独立な確率変数 u_i (分散 s_i^2 平均値0)からなる確率変数

 $x_n = (u_1 + u_2 + \dots + u_n)/\sqrt{\sigma_n^2}$ $\sigma_n^2 = s_1^2 + s_2^2 + \dots + s_n^2$ は、 $n \to \infty$ で分散1, 平均値0の正規分布に従う。 □ ばらつき=多数の確率的事象の和 x

コンピュータ上でランダムな数(乱数)を次々に生成し、ランダムなデータを作ることができる。エクセルでは RAND()という関数が用意されている。

□ RAND()で生成される乱数は一様分布関数 f(x) = 1 $(0 \le x < 1)$

に従い、平均と分散は、

$$\overline{x} = \int_0^1 x f(x) dx = \frac{1}{2} \qquad \sigma^2 = \int_0^1 (x - \overline{x})^2 f(x) dx = \frac{1}{12}$$

となるので、平均0の一様乱数(RAND()-0.5)を12個 足し合わせたものは、近似的に、平均0分散1の正規 分布に従う乱数(正規乱数)となっている。

Excelでの正規乱数発生方法

- □ データ分析ツールの利用(関数ではない)
 - データ/分析/データ分析/乱数発生
- □ 中心極限定理の応用
 - (12個の一様乱数の和)-6
 - =rand()+rand()+...+rand()-6.0

□ 逆関数法

- =norm.inv(rand(),0,1)または =norm.s.inv(rand())を用いる
- 分布f(x)の累積分布をF(x)とする

$$y = F(x) = \int_{-\infty}^{x} f(u) du$$

$$\frac{dy}{dx} = f(x), \ dy = f(x)dx$$

- □ 上記の3つの方法で、それぞれN個の正規乱数
 を発生させる(N = 10000 程度)。
- 上で得られたデータに対する分布関数のグラフを描く。
 - 分析ツール(後述)を用いて、度数分布表を作る。
 - 規格化された分布関数のデータを計算する。
 - 得られた分布関数のデータをグラフに描き、理論曲線 と比較する。
 - (余裕があれば)平均値と分散を計算し、理論値と比 較する。

□ 分析ツールを使って正規乱数を発生

RAND()を使って12個の一様乱数を足し合わせ て正規乱数を生成

□ 逆関数法により正規乱数を発生

□ エクセルで度数分布を作る方法に	はいろいろある
が、ここでは「分析ツール」を使う。	。これを使用可
能とするには、ファイル/オプション	ン/アドイン/設
定 で「分析ツール」を選択し「OK	、」をクリックする。
データ区間(級)を作成する	データ区間

□ 分析ツールを使う	-4.5
- データ/分析/データ分析/ヒストグラム	-4.3
- 入力範囲、データ区間を指定	-4.1

- 出力先を選択・指定

9

-3.9

. . .

4.3

データ区間	頻度	代表值 x	分布 f(x)	
-4.5	0			$f_n = F_n / \mathcal{N}$
-4.3	1	=(A2+A3)/2	=B2/\$B\$49	—
4.5	0			
次の級	0			
積分値	=SUM(B2:B47)*0.2			
		 ∆x:データ区間	司の増分値	10

□ 正規分布のデータを作成する。

代表值 x	正規分布
-4.5	=NORM.DIST(C3, 0, 1, FALSE)

- 関数NORM.DIST($x, \overline{x}, \sigma^2$, FALSE) はxの値に対する平均 \overline{x} 分 散 σ^2 の正規分布 f(x)の値を返す。
- NORM.S.DIST(x, FALSE) は NORM.DIST(x, 0, 1, FALSE) と同じ。
- 最後の引数がFALSEの場合、(密度)分布関数を、TRUEの場合、 累積分布関数を返す。

□ 分布関数のグラフ

- 横軸に代表値、縦軸に確率密度分布をとる。
- 理論値と度数分布から得られたデータを比較する。

方法	平均	分散
theory	0	1
excel	-0.00982	1.007028
rand	0.01078	1.019344
inv.func	-0.02518	1.015754

データ数: N = 10000

〜 分析ツールを使わずに分布関数の データを作成する。(補足)

□ 元データの作成(データの作成参照)

□ COUNTIF(範囲,検索条件)を使って累積度数分 布を作成。規格化して累積分布関数を得る。

□ 累積分布関数を微分して確率密度関数を得る。

1 正規乱数 データ区間 累積度数 累積分布 代表値 確率密度 2 -1.52061 -4.5 0 0 3 -1.37599 -4.3 0 0 -4.4 0 3 -1.37599 -4.3 0 0 -4.4 0 0 -4.4 0 3 -1.37599 -4.3 0 0 -4.4 0 0 -4.4 0 0 -4.4 0 0 -4.4 0 0 -4.4 0 0 -4.4 0 0 0 -4.4 0 0 0 -4.4 0	
1 正規乱数 データ区間 累積度数 累積分布 代表値 確率密度 2 -1.52061 -4.5 0 0 3 -1.37599 -4.3 0 0 -4.4 0 3 -1.37599 -4.3 0 0 -4.4 0 下であるデータの数	\$2.\$R\$
2 -1.52061 -4.5 0 0 0001,"<="&C2)	ΨΖ.ΨΟΨ
3 -1.37599 -4.3 0 0 -4.4 0 下であるデータの数3	つの値に
2411254 41 0 0 42 0 [E2]-D2/D\$47	2の値以 を返す。
5 -0.64805 -3.9 0 0 -4 0 累積度数の最後の値	直(=全 112/14-1-7
6 0.113184 -3.7 0 0 -3.8 0 [G3]=(E3-E2)/0.2	16169 6
7 0.397722 -3.5 2 0.0002 -3.6 0.001 累積分布を微分する	。0.2は
8 0.260922 -3.3 6 0.0006 -3.4 0.002 データ区間の増分値	0