
薬学情報処理演習 第3回

ブラウン運動のシミュレーション

奥薗 透 コロイド・高分子物性学

ブラウン運動

- □コロイド粒子(微粒子)の乱雑な運動
 - 多数の水分子の衝突の結果

時刻 $t_n = n\Delta t$ での 粒子の位置: (x_n, y_n) 変位: (ξ_n, ζ_n)

□ 平均2乗変位と拡散係数

$$\langle x_n^2 + y_n^2 \rangle = \langle (\xi_0 + \xi_1 + \dots + \xi_{n-1})^2 + (\zeta_0 + \zeta_1 + \dots + \zeta_{n-1})^2 \rangle$$

$$= \langle \xi_0^2 \rangle + \langle \xi_1^2 \rangle + \dots + \langle \xi_{n-1}^2 \rangle + \langle \zeta_0^2 \rangle + \langle \zeta_1^2 \rangle + \dots + \langle \zeta_{n-1}^2 \rangle$$

$$= 2n\sigma^2$$

$$= 2n\sigma^2$$

拡散係数
$$D \equiv \frac{\sigma^2}{2\Delta t} = \frac{\langle x_n^2 + y_n^2 \rangle}{4n\Delta t}$$

データの作成

- ロブラウン粒子の位置 (x_n, y_n) (n = 0, 1, ..., N) を生成し、いくつかの軌跡のサンプルを作る
- □ 各サンプルごとに2乗変位 $r_n^2 = x_n^2 + y_n^2$ を計算する

	Sample 1					Sample 2		
n	X	(1	y1	r1^2	x2	y2	r2^2	
	0	0	0	0				
	1	0.289772	0.185654	0.118435				
	2	-0.95122	-1.5858	3.419576				
	3	-1.52172	-1.97328	6.209484				

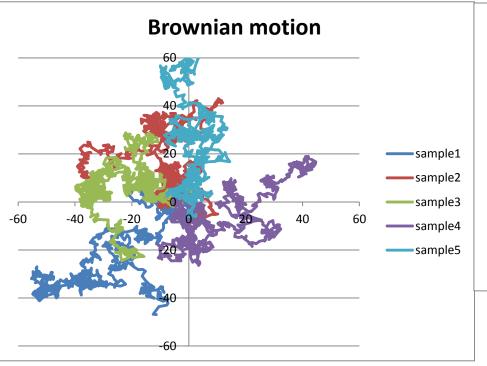
Nは1000程度、サンプル数は10程度

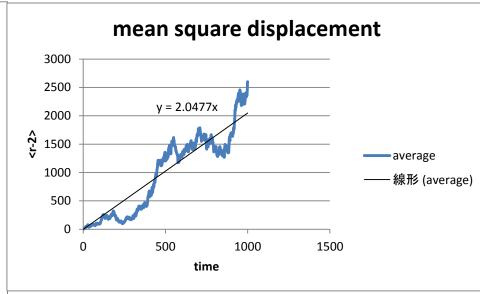
データの解析

□ 軌跡のサンプル(サンプル数: *M*)に対して平均し、平均2乗変位を計算する

$$\langle r_n^2 \rangle = \frac{1}{M} [(x_n^2 + y_n^2)_1 + (x_n^2 + y_n^2)_2 + \dots + (x_n^2 + y_n^2)_M]$$

- \square 平均2乗変位を時刻 $t_n = n\Delta t$ に対してプロットし、 それに対する近似直線の傾きから拡散係数を求める
 - $-\Delta t = 1$ とすれば、


$$D = \frac{\langle r_n^2 \rangle}{4n} = \frac{\text{(slope of the fitting line)}}{4}$$



グラフの作成

- □ブラウン粒子の軌跡を描く
- □ 平均2乗変位と近似直線のグラフを描き拡散係数を 求める

グラフツール/レイアウト/近似曲線 から近似直線が描ける

拡散係数:
$$D = \frac{2.0477}{4} = 0.51193$$

レポート

□ 演習課題をレポートとしてA4用紙1枚にまとめ、 学籍番号、氏名(自筆)を明記してこの時間内に 提出。

- □ブラウン運動の数値シミュレーション
 - ブラウン粒子の軌跡の図
 - 平均2乗変位のグラフと拡散係数
 - データの長さ(N)、サンプル数(M)、使用した乱数 の生成方法を明記