薬学情報処理演習 第2回

表計算ソフトによる統計 処理

奥菌 透 コロイド・高分子物性学

□ 例:多数のコロイド粒子の粒径 x_i (i = 1,2,...,N) の測定値から、度数分布を作成する。

□ 与えられたデータ(実験データなど) x_1, x_2, \dots, x_N

に対して、データ区間 X_1, X_2, \dots, X_M $(X_{i+1} = X_i + \Delta X)$ を定め、 $X_i \leq x_k < X_{i+1}$ を満たすデータ (x_k) の個数を度数(頻度) F_i とする。

エクセルで度数分布を作る方法はいろいろある が、ここでは「分析ツール」を使う。これを使用可 能とするには、

Officeボタン/Excelのオプション/アドイン/設定 で「分析ツール」を選択して「OK」をクリックする。

□ データを作る

- 0から99までの数をでたらめに30個 程度一列に入力する
- □ データ区間を入力する
 - 間隔を20くらいにとる
- □ 分析ツールを使う
 - データ/分析/データ分析/ヒストグラム
 - 入力範囲、データ区間を指定
 - 出力先を選択・指定
 - グラフ作成をチェック(オプション)

データ	データ区間
24	0
56	20
19	40
48	60
97	80
2	100
76	

- □ 関数RAND()を用いてデータを作成する。
 - RAND()は呼び出されるたびに、0と1の間のでたらめ な数(疑似乱数)を返す関数である。
 - この関数で生成された乱数は0と1の間で一様な分布
 をもつ(一様乱数)。
- □ 一様乱数から正規分布をもつ乱数を生成する。
 (後述)
- 上記のデータに対するヒストグラムを作る。
 - 分析ツールを用いて、度数分布を作る。
 - データを規格化して理論曲線と比較する。

規格化:
$$\int_{-\infty}^{\infty} f(x) dx = 1$$

国実験的に測定される量には"ばらつき"がある。 ばらつき=平均値からのずれは以下のガウス分 布に従うことが多い。なぜか?

□ 中心極限定理

n 個の独立な確率変数 u_i (分散 s_i^2 平均値0) _5 _4 _3 _2 _1 0 1 2 3 4 からなる確率変数 x

f(x)

 $x_n = (u_1 + u_2 + \dots + u_n)/\sqrt{\sigma_n^2}$ $\sigma_n^2 = s_1^2 + s_2^2 + \dots + s_n^2$ は、 $n \to \infty$ で分散1, 平均値0の正規分布に従う。

□ ばらつき=多数の確率的事象の和

 $\sigma = 1$

□ RAND()を使って乱数を生成する(数千個)。

		uniform	n=2	n=4	n=12
		-0.04527	0.073737	0.366643	2.003184
		-0.01196	-0.07254	-1.29495	0.527577
		0.496424	0.442248	0.015446	1.058621
		0.08482	-0.80747	-0.36108	2.226332
		-0.05235	1.227829	-0.67171	0.602208
量	ſ	平均值			
		-0.001	0.014706	0.023185	0.018525
		分散			
	J	0.084827	1.001033	0.978528	1.019962
	<u> </u>	最大値			
		0.498811	2.39257	2.875021	3.597864
		最小値			
		-0.49964	-2.2876	-2.84531	-3.78472

各データに対する統計量 の出力:

- データのチェック
- データ範囲の目安

□ RAND()で生成される乱数は一様分布関数 p(x) = 1 ($0 \le x < 1$) に従い、平均と分散は、 $\langle x \rangle = \int_{0}^{1} xp(x)dx = \frac{1}{2}$ $\langle (x - \langle x \rangle)^{2} \rangle = \int_{0}^{1} (x - \langle x \rangle)^{2} p(x)dx = \frac{1}{12}$ となるので、平均0の一様乱数と、それを n 個足 し合わせた乱数を以下のように生成する。

u = x - 0.5 $x_n = (u_1 + u_2 + \dots + u_n)\sqrt{12/n}$

uniform	n=2
=RAND()-0.5	= (RAND()+RAND()-1)*SQRT(6)

□ データ区間を入力する

- -4.0から4.0まで0.2刻みで入力
- 代表値も作っておくとよい
- □ 理論曲線を描くためのデータを作成する

データ区間	代表値	正規分布
-4.0		
-3.8	=(F2+F3)/2	=NORM.DIST(G3, 0, 1, FALSE)
-3.6		
-3.4		

□ 分析ツールを使って度数分布を出力する。
 - グラフは後で作成する(チェックしない)

□ 度数分布を規格化し確率密度分布を計算する。

$$\sum_{i} F_i \Delta X = \mathcal{N} \quad \Longrightarrow \quad \sum_{i} f_i \Delta X = 1, \quad f_i = F_i / \mathcal{N}$$

10

□ 正規分布のグラフ

- 横軸に代表値、縦軸に確率密度分布をとる。
- 理論値と度数分布から得られたデータを比較する。

□ 演習課題をレポートとして<u>A4用紙1枚</u>にまとめ、 学籍番号、氏名(自筆)を明記してこの時間内に 提出。