溶媒中の孤立した高分子 薬学情報処理演習 第7回 確率的シミュレーション □ 高分子:モノマーと呼ばれる構成単位(-CH₂-高分子のランダムウォーク 等)が線状につながったもの モデル 1つの高分子は10²-10⁶個のモノマーから成る - 1つの高分子を構成する全モノマー数を重合度という □長くてくねくね曲がりやすい 奥薗 透 □ 生体中にたくさんある。DNAも高分子である コロイド・高分子物性学 □ 高分子でできた物質は低分子の物質には見られ ない特異な性質を示す □ 溶媒中で高分子はどのような形態をとっている のだろうか?

- □ N個のモノマーを規則格子上に以下のような手順で 配置する
- □ ある格子上のセルに最初のモノマーを置く
- 次のモノマーを、隣接するセルの中からランダムに 選んだセルに置く
 - このとき選んだセルが既に他のモノマーに占有されていて もよい(モノマーの重なりを許す)
 - モノマーの重なりを許さない配置の方法は Self Avoiding Walk (SAW) と呼ばれる
- □上の操作を繰り返して1つの高分子鎖の配置を得る
- このようにして得られた高分子鎖は理想鎖と呼ばれる

- 格子のセルに初期値(すべて0)を入力しカラース ケール表示する
- □ 開発タブ「Visual Basic」をクリックしVBEを起動する
- 「VBAProject(Book1)」を選択し、「挿入」→「標準モジュール」をクリック
- □ コードウィンドウで「Sub OOO」(OOOはマクロ 名)と入力しEnterキーを押し、コード入力を開始する

	A	В	С	D	E	F	G	н	I	J	к	L	м	N	0	Ρ	Q	R	S	т	U	۷
1	Pol	lymer (random walk)																				
2																						
3		Initial position								Computing region												
4			i =	60						iMin =				11			iMax =		110			
5		j = 5								jMin =				1		jMax =			100			
6		Polymerization index							Center of gravity													
7			N =	1000						×g=			45.1469				yg=		46.7812			
8									Gyra	tion	radiu	IS										
9										Rg=			13.5776									
10																						
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- ランダムウォークのプログラムを完成させる
- モノマーの位置 *r_n*が設定したセルの範囲をこえ たときの処理をする
- □ 高分子の重心位置 R、慣性半径 R_gを計算する

$$\boldsymbol{R} = \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{r}_n \qquad R_g^2 = \frac{1}{N} \sum_{n=1}^{N} |\boldsymbol{r}_n - \boldsymbol{R}|^2$$

□上記の課題をレポートとしてA4用紙1枚にまとめ、 学籍番号、氏名(自筆)を明記してこの時間内に 提出。

9